题目内容
如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于 度
如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= .
如图4,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )
A.∠A=∠D B.AB=DC
C.∠ACB=∠DBC D.AC=BD
如图14,已知图①中抛物线经过点D(-1,0),D(0,-1),E(1,0).
(1)(4分)求图①中抛物线的函数表达式.
(2)(4分)将图①中的抛物线向上平移一个单位,得到图②中的抛物线,点D与点D1是平移前后的对应点,求该抛物线的函数表达式.
(3)(4分)将图②中的抛物线绕原点O顺时针旋转90°后得到图③中的抛物线,所得到抛物线表达式为,点D1与D2是旋转前后的对应点,求图③中抛物线的函数表达式.
(4)(4分)将图③中的抛物线绕原点O顺时针旋转90°后与直线 相交于A、B两点,D2与D3是旋转前后如图④,求线段AB的长.
如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。此角平分仪的画图原理是:根据仪器结构,可得
△ABC≌△ADC,这样就有∠QAE=∠PAE。则说明这两个三角形全等的依据是
A. SAS B. ASA C. AAS D. SSS
计算:;
正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图。
(1)若α=0°,则DF=BF,请加以证明;
(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;
(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由。
底面周长为10πcm,高为12cm的圆锥的侧面积为 .
如图,AD∥CB,∠D=43°,∠B=25°,则∠DEB的度数为( )
A. 72° B. 68° C. 63° D. 18°