题目内容
【题目】P是△ABC内一点,∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC=22°,则∠APC的度数为_____.
![]()
【答案】142°
【解析】
在AC的延长线上截取AF=AB,连BF,PF,延长AP交BC于D,交BF于E,证得△APB≌△APF,则AP为BF的垂直平分线,由∠PBA=8°可得∠CBF=30°=∠CBP,∠BFP=60°=∠BPF,可得BC平分PF,进一步可求出∠APC的度数.
在AC的延长线上截取AF=AB,连BF,PF,延长AP交BC于D,交BF于E,
![]()
在△APB和△APF中,
,
∴△APB≌△APF(SAS),
∴AB=AF,PB=PF,∠AFP=∠ABP=8°,
∴AP垂直平分BF,∠BPE=∠BAP+∠ABP=30°°,∠FPE=∠CAP+∠AFP=30°
∴∠AEP=∠FEP=90°,
∴∠PBF=∠PFB=60°
∵∠PBC=30°
∴∠CBF=30°=∠PBC,∠BPF=∠BFP=∠PBF=60°,
∴三角形BPF是等边三角形,BC平分∠PBF
∴BC垂直平分PF
∴PC=PF
∴∠CPF=∠CFP=8°
∴∠DPC=38°
∴∠APC=142°;
故答案为:142°.
练习册系列答案
相关题目