题目内容

如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.
(1)写出A、B、D三点坐标;
(2)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式.
(1)解:∵P(1,0),⊙P的半径是2,
∴OA=2﹣1=1,OB=2+1=3,
在Rt△COP中,PC=2,OP=1,
由勾股定理得:OC=
由垂径定理得:OD=OC=
∴A(﹣1,0),B(3,0),D(0,﹣);
(2)解:连接PQ,
在Rt△COP中,sin∠CPO=
∴∠CPO=60°,
∵Q为弧BC的中点,
∴∠CPQ=∠BPQ=(180°﹣60°)=60°,
∵MN切⊙P于Q,
∴∠PQM=90°,
∴∠QMP=30°,
∵PQ=2,
∴PM=2PQ=4,
在Rt△MON中,MN=2ON,
∵MN2=ON2+OM2
∴(2ON)2=ON2+(1+4)2
∴ON=
∴M(5,0),N(0,),
设直线MN的解析式为y=kx+b,
代入得:
解得:k=﹣,b=
∴直线MN的解析式是y=﹣x+
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网