题目内容
在梯形ABCD中,AD∥BC,对角线AC⊥BD且AC=12,BD=5,则梯形中位线的长为________.
6.5
分析:作DE∥AC,交BC的延长线于E,则四边形ACED为平行四边形,根据已知及平行四边形的性质得梯形的中位线等于BE的一半,根据勾股定理可求得BE的长,从而不难求得其中位线的长.
解答:
解:作DE∥AC,交BC的延长线于E,则四边形ACED为平行四边形
∴AD=CE
∵AC⊥BD
∴∠BDE=90°
∴梯形的中位线长=
(AD+BC)=
(CE+BC)=
BE
∵BE=
=
=13
∴梯形的中位线长=
×13=6.5.
故答案为:6.5.
点评:本题考查了梯形的中位线定理,解答此题的关键是作出辅助线,构造出平行四边形和直角三角形,将求梯形中位线转化为求直角三角形斜边的问题来解答.
分析:作DE∥AC,交BC的延长线于E,则四边形ACED为平行四边形,根据已知及平行四边形的性质得梯形的中位线等于BE的一半,根据勾股定理可求得BE的长,从而不难求得其中位线的长.
解答:
∴AD=CE
∵AC⊥BD
∴∠BDE=90°
∴梯形的中位线长=
∵BE=
∴梯形的中位线长=
故答案为:6.5.
点评:本题考查了梯形的中位线定理,解答此题的关键是作出辅助线,构造出平行四边形和直角三角形,将求梯形中位线转化为求直角三角形斜边的问题来解答.
练习册系列答案
相关题目