题目内容

【题目】如图,在矩形ABCD中,AB=2,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为_____________________时,△CDF是等腰三角形.

【答案】2或2或4﹣2

【解析】

试题分析:①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,延长CM交AD于点G,∴AG=GD=2,∴CE=2,∴当BE=2时,△CDF是等腰三角形;

②DF=DC时,则DF=DC=AB=2,∵DF⊥AE,AD=2,∴∠DAE=45°,则BE=2,∴当BE=2时,△CDF是等腰三角形;

③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB=2,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,即,解得:x=4﹣2或x=4+2(舍去);∴当BE=4﹣2时,△CDF是等腰三角形.综上,当BE=2或2或4﹣2 时,△CDF是等腰三角形.故答案为:2或2或4﹣2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网