题目内容
课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图所示),∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪很快就知道了砌墙砖块的厚度(每块砖的厚度相等)为________cm.
分析:首先证明△ACD≌△CEB(AAS),进而利用勾股定理,在Rt△AFB中,AF2+BF2=AB2,求出即可.
解答:
设砌墙砖块的厚度为xcm,则BE=2xcm,则AD=3xcm,
∵∠ACB=90°,
∴∠ACD+∠ECB=90°,
∵∠ECB+∠CBE=90°,
∴∠ACD=∠CBE,
在△ACD和△CEB中,
∴△ACD≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=5x,AF=AD-BE=x,
∴在Rt△AFB中,
AF2+BF2=AB2,
∴25x2+x2=400,
解得;x=
故答案为:
点评:此题主要考查了勾股定理的应用以及全等三角形的判定与性质,得出AD=BE,DC=CF是解题关键.
练习册系列答案
相关题目