题目内容

某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得3502万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

解:(1)∵z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,
∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800。
(2)由z=350,得350=﹣2x2+136x﹣1800,
解这个方程得x1=25,x2=43。
∴销售单价定为25元或43元时,厂商每月能获得3502万元的利润。
∵z═﹣2x2+136x﹣1800 =﹣2(x﹣34)2+512,
∴当销售单价为34元时,每月能获得最大利润,最大利润是512万元。
(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,

当25≤x≤43时,z≥350。
又由限价32元,得25≤x≤32。
根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,
∴当x=32时,每月制造成本最低。
最低成本是18×(﹣2×32+100)=648(万元)。
∴所求每月最低制造成本为648万元。

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网