题目内容
如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.

(1)求∠EDC的度数;
(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).
(1)求∠EDC的度数;
(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).
(1)35°;(2)
n°+35°;(3)215°-
n°.
试题分析:(1)根据角平分线的性质结合∠ADC=70°即可求得结果;
(2)过点E作EF∥AB,即可得到AB∥CD∥EF,从而可得∠ABE=∠BEF,∠CDE=∠DEF,再根据角平分线的性质可得∠ABE=
(3)过点E作EF∥AB,根据角平分线的性质可得∠ABE=
(1)∵DE平分∠ADC,∠ADC=70°,
∴∠EDC=
(2)过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABE=
∴∠BED=∠BEF+∠DEF=
(3)过点E作EF∥AB
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°
∴∠ABE=
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-
∴∠BED=∠BEF+∠DEF=180°-
点评:本题知识点较多,综合性强,难度较大,是中考常见题,正确作出辅助线是解题关键.
练习册系列答案
相关题目