题目内容

如图1,在平面直角坐标系中,一次函数y=-2x+12的图象与x轴交于点A,与y轴交于点B,与直线OC:y=2x交于点C.
(1)过B点作直线与x轴交于点M,若△ABM的面积为24,试求点M的坐标.
(2)如图2,∠AOC的平分线ON交AB于点E,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索:AQ+PQ是否存在最小值?若存在,在图2中画出点P和点Q,并求出这个最小值;若不存在,说明理由.作业宝

解(1)在y=-2x+12中,令y=0,解得:x=6,
令x=0,解得:y=12,
则A的坐标是(6,0),B的坐标是(0,12),
设点M的坐标的坐标是(a,0),则|a-6|×12=24,
解得:a=2或10,
∴M(2.0)或(10.0);
(2)存在.
由题意,在OC上截取OH=OP,连结HQ,
∵OP平分∠AOC,
∴∠AOQ=∠COQ,
在△POQ和△HOQ中,

∴△POQ≌△HOQ(SAS),
∴PQ=HQ,
∴AQ+PQ=AQ+HQ,
当A、Q、H在同一直线上,且AH⊥OC时,AQ+HQ最小.即AQ+PQ存在最小值.
解方程组
解得:
所以C(3,6),OC=
S△ABC=
解得AH=
∴这个最小值为
分析:(1)首先求得A、B的坐标,点M的坐标的坐标是(a,0),然后根据三角形的面积公式即可求得a的值,得到M的坐标;
(2)当A、Q、H在同一直线上,且AH⊥OC时,AQ+HQ最小.即AQ+PQ存在最小值,求得OC的长,利用三角形的面积公式即可求得AQ+PQ的最小值.
点评:本题是一次函数和对称的性质的综合应用,正确确定AQ+HQ最小的条件是本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网