题目内容
分析:过B,D分别作AC的垂线,垂足为E,F于是Rt△BEO∽Rt△DFO,设S△AOB=S,则
=
=
,根据S3即可求得S的值,即可解题.
| S |
| S3 |
| BO |
| BD |
| 1 |
| 3 |
解答:
解:过B,D分别作AC的垂线,垂足为E,F.于是
Rt△BEO∽Rt△DFO,所以
=
.
∴
=
=
=
,
由题设
=
=
=
,
=
,
设S△AOB=S,则
=
=
,
所以S=
S3=2.
Rt△BEO∽Rt△DFO,所以
| BE |
| DF |
| BO |
| DO |
∴
| S△ABC |
| S△ADC |
| ||
|
| BE |
| DF |
| BO |
| DO |
由题设
| BO |
| DO |
| S△ABC |
| S△ACD |
| 5 |
| 10 |
| 1 |
| 2 |
| BO |
| BD |
| 1 |
| 3 |
设S△AOB=S,则
| S |
| S3 |
| BO |
| BD |
| 1 |
| 3 |
所以S=
| 1 |
| 3 |
点评:本题考查了相似三角形的判定,考查了相似三角形对应边比值相等的性质,本题中求证
=
=
是解题的关键.
| S |
| S3 |
| BO |
| BD |
| 1 |
| 3 |
练习册系列答案
相关题目