题目内容
【题目】如图,已知△CAD与△CEB都是等边三角形,BD、EA的延长线相交于点F.
![]()
(1)求证:△ACE≌△DCB.
(2)求∠F的度数.
(3)若AD⊥BD,请直接写出线段EF与线段BD、DF之间的数量关系.
【答案】(1)见解析;(2)60°;(3)EF=BD+2DF.
【解析】
(1)根据等边三角形的性质得到CB=CE,CD=CA,∠BCE=∠DCA=60°,由全等三角形的判定定理即可得到结论;
(2)设BC与EF相交于G,根据全等三角形的性质得到∠1=∠2,根据三角形的内角和即可得到结论;
(3)根据垂直的定义得到∠ADF=90°,求得∠DAF=30°,根据直角三角形的性质得到AF=2DF,根据全等三角形的性质得到AE=BD,于是得到结论.
(1)∵△CAD与△CEB都是等边三角形,
∴CB=CE,CD=CA,∠BCE=∠DCA=60°,
∴∠BCD=∠ECA,
∴△ACE≌△DCB(SAS);
(2)设BC与EF相交于G,
由(1)可知△ACE≌△DCB,
∴∠1=∠2,
∵∠1+∠BGF+∠F=∠2+∠AGC+∠BCE=180°,
而∠BGF=∠AGC,
∴∠F=∠BCE=60°;
(3)EF=BD+2DF,理由如下:
∵AD⊥BD,
∴∠ADF=90°,
∵∠F=60°,
∴∠DAF=30°,
∴AF=2DF,
∵△ACE≌△DCB,
∴AE=BD,
∴EF=AE+AF=BD+2DF.
![]()
练习册系列答案
相关题目