题目内容

精英家教网如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB将纸片沿OB折叠,使A落在A′的位置,若OB=
5
,tan∠BOC=
1
2
,则OA′=
 
分析:如图所示,OABC构成矩形,则OA=BC,AB=OC,tan∠BOC=
1
2
=
BC
OC
=
OA
AB
.所以AB=2OA.
根据勾股定理得:OA=1.所以OA′=1.
解答:解:∵OABC是矩形,
∴OA=BC,AB=OC,tan∠BOC=
1
2
=
BC
OC
=
OA
AB

∴AB=2OA.
∵OB2=AB2+OA2
∴OA=1.
∵OA′由OA翻折得到,
∴OA=OA′=1.
点评:此题考查折叠变换的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网