题目内容
函数y=ax2+bx与y=ax+b(ab≠0)的图象大致是( )
A. B.
C. D.
如图,?ABCD中,点E是CD延长线上一点,BE交AD于点F,DE=CD.
(1)求证:△ABF∽△CEB
(2)若△DEF的面积为2,求?ABCD的面积.
(3)若G、H分别为BF、AB的中点,AG、FH交于点O,求.
如图,小颖利用有一锐角是的三角板测量一棵树的高度,已知她与树之间的水平距离,她的眼睛距地面的距离,那么这棵树高( )
A. B. C. D.
抛物线y=﹣2x2+6x﹣1的顶点坐标为_____.
抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是( )
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.
(1)求抛物线的表达式;
(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;
(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
某企业因生产转型,二月份产值比一月份下降20%,转型成功后生产呈现良好上升势头,三、四月份稳步增长,月平均增长率为x,设该企业一月份产值为a,则该企业四月份的产值y关于x的函数关系式为_____
如图,二次函数y=a(x2﹣4mx﹣12m2)(其中a、m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣6),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
(1)用含m的代数式表示a;
(2)求证:为定值;
(3)设该二次函数图象的顶点为F,连接FC并延长交x轴的负半轴于点G,判断以线段GF、AD、AE的长度为三边长的三角形的面积是否能为24(+1)m2﹣48m﹣72+24,能则求出m;不能则说明理由.
如图,在中,,分别交,于点,.若,,则的值为( )