搜索
题目内容
已知:
那么
吗?
我是这样想思考的:
∵
(已知)
( )
∴
( )
∴AF∥ED ( )
∴
( )
∵
∴
∴AB∥CD ( )
∴
( )
你认为对吗?如果对,请在括号里填写理由。
试题答案
相关练习册答案
解析:
略
练习册系列答案
易百分初中同步训练方案系列答案
百分导学系列答案
金钥匙冲刺名校大试卷系列答案
启东黄冈大试卷系列答案
尖子生题库系列答案
功到自然成系列答案
零负担作业系列答案
联动课堂课时作业系列答案
整合集训天天练系列答案
课时训练江苏人民出版社系列答案
相关题目
9、妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:
老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…
妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:
老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…
妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:
老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案