ÌâÄ¿ÄÚÈÝ
ÔĶÁ²ÄÁÏ£º°ÑÐÎÈçax2+bx+cµÄ¶þ´ÎÈýÏîʽ£¨»òÆäÒ»²¿·Ö£©Åä³ÉÍêȫƽ·½Ê½µÄ·½·¨½Ð×öÅä·½·¨£®Åä·½·¨µÄ»ù±¾ÐÎʽÊÇÍêȫƽ·½¹«Ê½µÄÄæÐ´£¬¼´a2¡À2ab+b2=£¨a¡Àb£©2£®
ÀýÈ磺x2-2x+4=x2-2x+1+3=£¨x-1£©2+
x2-2x+4=x2-4x+4+2x=£¨x-2£©2+
x2-2x+4=
x2-2x+4+
x2=£¨
x-2£©2+
x2
x2ÊÇx2-2x+4µÄÈýÖÖ²»Í¬ÐÎʽµÄÅä·½£¨¼´¡°ÓàÏ·Ö±ðÊdz£ÊýÏî¡¢Ò»´ÎÏî¡¢¶þ´ÎÏî--¼ûºáÏßÉϵIJ¿·Ö£©£®
Çë¸ù¾ÝÔĶÁ²ÄÁϽâ¾öÏÂÁÐÎÊÌ⣺
£¨1£©±ÈÕÕÉÏÃæµÄÀý×Ó£¬½«¶þ´ÎÈýÏîʽx2-4x+9Åä³ÉÍêȫƽ·½Ê½£¨Ö±½Óд³öÁ½ÖÖÐÎʽ£©£»
£¨2£©½«a2+3ab+b2Åä·½£¨Ð´Á½ÖÖÐÎʽ¼´¿É£¬ÐèдÅä·½¹ý³Ì£©£»
£¨3£©ÒÑÖªa2+b2+c2-2ab+2c+1=0£¬Çóa-b+cµÄÖµ£®
ÀýÈ磺x2-2x+4=x2-2x+1+3=£¨x-1£©2+
3
3
£»x2-2x+4=x2-4x+4+2x=£¨x-2£©2+
2x
2x
£»x2-2x+4=
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
Çë¸ù¾ÝÔĶÁ²ÄÁϽâ¾öÏÂÁÐÎÊÌ⣺
£¨1£©±ÈÕÕÉÏÃæµÄÀý×Ó£¬½«¶þ´ÎÈýÏîʽx2-4x+9Åä³ÉÍêȫƽ·½Ê½£¨Ö±½Óд³öÁ½ÖÖÐÎʽ£©£»
£¨2£©½«a2+3ab+b2Åä·½£¨Ð´Á½ÖÖÐÎʽ¼´¿É£¬ÐèдÅä·½¹ý³Ì£©£»
£¨3£©ÒÑÖªa2+b2+c2-2ab+2c+1=0£¬Çóa-b+cµÄÖµ£®
·ÖÎö£º£¨1£©£¨2£©¸ù¾ÝÔĶÁ²ÄÁÏ¿ÉÒԵõ½¿ÉÒÔ°ÑÈýÏîʽÖеÄÁ½Ïî×÷ΪÍêȫƽ·½Ê½µÄÁ½Ï´Ó¶øÈ·¶¨µÚÈýÏî¼´¿É£»
£¨3£©ÒÑÖªµÄʽ×Ó¿ÉÒÔ±äÐγɣ¨a2+b2-2ab£©+£¨c2+2c+1£©=0£¬µÃµ½Á½¸öÍêȫƽ·½Ê½µÄºÍÊÇ0£¬¼´¿É¸ù¾ÝÁ½¸ö·Ç¸ºÊýµÄºÍÊÇ0£¬Ôòÿ¸öÊýÊÇ0£¬ÇóµÃa£¬b£¬cµÄ¹ØÏµ£¬´Ó¶øÇó½â£®
£¨3£©ÒÑÖªµÄʽ×Ó¿ÉÒÔ±äÐγɣ¨a2+b2-2ab£©+£¨c2+2c+1£©=0£¬µÃµ½Á½¸öÍêȫƽ·½Ê½µÄºÍÊÇ0£¬¼´¿É¸ù¾ÝÁ½¸ö·Ç¸ºÊýµÄºÍÊÇ0£¬Ôòÿ¸öÊýÊÇ0£¬ÇóµÃa£¬b£¬cµÄ¹ØÏµ£¬´Ó¶øÇó½â£®
½â´ð£º½â£º£¨1£©£¨x-2£©2+5£¬£¨x-3£©2-2x£»
£¨2£©a2+3ab+b2=a2+3ab+£¨
b£©2-£¨
b£©2+b2=£¨a+
b£©2-
b2£»
a2+3ab+b2=a2+2ab+b2+ab=£¨a+b£©2+ab£»
£¨3£©¡ßa2+b2+c2-2ab+2c+1=0£¬
¡à£¨a2+b2-2ab£©+£¨c2+2c+1£©=0
¼´£¨a-b£©2+£¨c+1£©2=0£¬
¡àa-b=0ÇÒc=-1£¬
¡àa-b+c=-1£®
£¨2£©a2+3ab+b2=a2+3ab+£¨
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 5 |
| 4 |
a2+3ab+b2=a2+2ab+b2+ab=£¨a+b£©2+ab£»
£¨3£©¡ßa2+b2+c2-2ab+2c+1=0£¬
¡à£¨a2+b2-2ab£©+£¨c2+2c+1£©=0
¼´£¨a-b£©2+£¨c+1£©2=0£¬
¡àa-b=0ÇÒc=-1£¬
¡àa-b+c=-1£®
µãÆÀ£º±¾Ì⿼²éÁËÍêȫƽ·½Ê½£¬ÕýÈ·¶Á¶®ÌâÄ¿ÖеÄÔĶÁ²ÄÁÏ£¬Àí½âÅä·½µÄ·½·¨Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿