题目内容
【题目】如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以π cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为______时,BP与⊙O相切.
![]()
【答案】2或10
【解析】
根据切线的判定与性质进行分析即可.若BP与⊙O相切,则∠OPB=90°,又因为OB=2OP,可得∠B=30°,则∠BOP=60°;根据弧长公式求得弧AP长,除以速度,即可求得时间.
连接OP
∵当OP⊥PB时,BP与⊙O相切,
∵AB=OA,OA=OP,
∴OB=2OP,∠OPB=90°;
∴∠B=30°;
∴∠O=60°;
∵OA=6cm,
弧AP=
=2π,
∵圆的周长为:12π,
∴点P运动的距离为2π或12π-2π=10π;
∴当t=2秒或10秒时,有BP与⊙O相切.
![]()
故答案为:2或10
练习册系列答案
相关题目
【题目】有
筐白菜,以每筐
千克为标准,超过或不足的分别用正、负来表示,记录如下:
与标准质量的差 |
|
|
|
|
|
|
筐 数 |
|
|
|
|
|
|
(1)与标准质量比较,
筐白菜总计超过或不足多少千克?
(2)若白菜每千克售价
元,则出售这
筐白菜可卖多少元?