题目内容
化简可得( )
A. B. C. D.
如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
(1)求∠ABC的度数;
(2)如果AC=,求DE的长.
已知a、b为有理数,下列式子:①|ab|>ab;② ;③ ;④a3+b3=0,其中一定能够表示a、b异号的有( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k=__.
因式分【解析】a3-a=______.
如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.
(1)若AD=3,BE=4,求EF的长;
(2)求证:CE=EF;
(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.
在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是__(把你认为正确结论的序号都填上.)
如图,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,.
(1)求证:BH∥CD;
(2)如图:直线AF交DC于F,平分∠EAF,平分∠BAE. 试探究∠,∠AFG的数量关系.
绝对值大于或等于1,而小于4的所有正整数的和是( )
A. 8 B. 7 C. 6 D. 5