题目内容
设函数的图象如图所示,它与轴交于、两点,且线段与的长的比为,则________.
两个实根之和为的一元二次方程是( )
A. B.
C. D.
如图,△ABC三个顶点的坐标分别为A(-4,1),B(-3,3),C(-1,2).
(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.
(2)在x轴上画出点P,使PA+PC最小.(不写作法,保留作图痕迹)
若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于( )
A. 15 B. 16 C. 14 D. 14或16
某企业设计了一款工艺品,每件的成本是元,为了合理定价,投放市场进行试销.据市场调查,销售单价是元时,每天的销售量是件,而销售单价每降低元,每天就可多售出件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?
已知抛物线经过点,当该抛物线顶点的纵坐标的值最小时,________,________.
将抛物线绕它的顶点旋转180°,所得抛物线的解析式是( ) A. B.
C. D.
如图,用长为米的篱笆,一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽为米,围成的花圃面积为米,则关于的函数关系式是________.
已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点
(1) 试求a和b的值
(2) 点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?
(3) 点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.