题目内容
小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).
解:连接PA、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N则∠APM=45°,∠BPM=60°,NM=10米设PM=x米
在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)
在Rt△PNB中,BN=PN×tan∠BPM=(x﹣10)tan60°=(x﹣10)
(米)
由AM+BN=46米,得x+(x﹣10)
=46
解得,
,
∴点P到AD的距离为
米.(结果分母有理化为
米也可)
在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)
在Rt△PNB中,BN=PN×tan∠BPM=(x﹣10)tan60°=(x﹣10)
由AM+BN=46米,得x+(x﹣10)
解得,
∴点P到AD的距离为
练习册系列答案
相关题目