题目内容
(2分)三角形的三边长分别为5,1+2x,8,则x的取值范围是( )
A.2<x<5 B.2.5<x<4.5 C.1<x<6 D.3<x<5
(5分)学着说点理,填空:
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,( )
∴AD∥EG,( )
∴∠1=∠2,( )
∠E=∠3,(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴ = (等量代换)
∴AD平分∠BAC( )
在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=( )
A.36° B.108° C.72° D.60°
(2分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为 .
(2分)如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=45°,则∠BDF度数是( )
A.80° B.90° C.40° D.不确定
(9分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.
(1)求第一次每个笔记本的进价是多少?
(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?
(3分)对于非零的两个实数a、b,规定a⊕b=,若2⊕(2x﹣1)=1,则x的值为 .
(9分)去冬今春,某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
计算: .