题目内容

如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4,DC=6,求AD的长.

小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.

请按照小萍的思路,探究并解答下列问题:

(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;

(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

 

【答案】

可求证∠E=∠ADB=90°∠F=∠ADC=90°AE=AF.∴四边形AEGF是正方形.

(2)AD=12

【解析】

试题分析:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF .

∴∠DAB=∠EAB ,∠DAC=∠FAC ,又∠BAC=45°,

∴∠EAF=90°.

又∵AD⊥BC

∴∠E=∠ADB=90°∠F=∠ADC=90°.

又∵AE=AD,AF=AD

∴AE=AF.

∴四边形AEGF是正方形.

(2)解:设AD=x,则AE=EG=GF=x.

∵BD=4,DC=6

∴BE=4 ,CF=6

∴BG=x-4,CG=x-6

在Rt△BGC中,BG2+CG2=BC2

∴( x-4)2+(x-6)2=102.

化简得,x2-10x-24=0 

解得x1=12,x2=-2(舍去)

所以AD=x=12

考点:四边形与一元二次方程探究

点评:本题难度较大,主要考查学生对四边形判定及一元二次方程综合应用的掌握能力,为中考常考题型,要求学生培养数形结合思想,运用到考试中去。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网