题目内容
2、过多边形的一个顶点的所有对角线,将这个多边形分成3个三角形,这个多边形的内角和等于
540°
.分析:根据多边形的边数-2等于过多边形的对角线,将这个多边形分成的三角形的个数,即可求得多边形的边数,然后利用多边形的内角和定理即可求解.
解答:解:多边形的边数是:3+2=5,
则内角和是:(5-2)•180°=540°.
故答案是:540°.
则内角和是:(5-2)•180°=540°.
故答案是:540°.
点评:本题考查了多边形的内角和定理,根据三角形的个数确定多边形的边数的关键.
练习册系列答案
相关题目