题目内容
已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是【 】
| A.k> | B.k≥ | C.k > | D.k≥ |
C。
∵方程为一元二次方程,∴k-2≠0,即k≠2。
∵方程有两个不相等的实数根,∴△>0,
∴(2k+1)2-4(k-2)2>0,即(2k+1-2k+4)(2k+1+2k-4)>0,
∴5(4k-3)>0,k>
。
∴k的取值范围是k>
且k≠2。故选C。
∵方程有两个不相等的实数根,∴△>0,
∴(2k+1)2-4(k-2)2>0,即(2k+1-2k+4)(2k+1+2k-4)>0,
∴5(4k-3)>0,k>
∴k的取值范围是k>
练习册系列答案
相关题目