题目内容
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.
(1)求证:DE是⊙O的切线;
(2)若,AD=4,求CE的长.
观察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
…………………….
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
根据上述规律填空:27×_________=_______×_________.
如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )
A. B. C. D.
如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点.现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH.若HG的延长线恰好经过点D,则CD的长为( )
A. 2cm B. cm C. 4cm D. cm
计算a•a5-(2a3)2的结果为( )
A. a6-2a5 B. -a6 C. a6-4a5 D. -3a6
若关于x的二次三项式x2-kx-3因式分解为(x-1)(x+b),则k+b的值为 ______ .
如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1=y2,记M=y1=y2,下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )
A. ③④ B. ②③ C. ②④ D. ①④
已知:y=2x2﹣ax﹣a2,且当x=1时,y=0,先化简,再求值:(1﹣)÷
(12分)如图,以△ABC中的AB、AC为边分别向外作正方形ADEB、ACGF,
连接DC、BF。(相关知识链接:正方形的四条边都相等,四个角都是直角)
(1)观察图形,利用旋转的观点说明:
△ADC绕着点__ ___逆时针旋转___ __°得到△ABF 。
(2)猜想: CD与BF有怎样的数量关系和位置关系?并证明你的猜想.
(3) 若CD与BF相交于点M,求∠AMF的度数。