题目内容
【题目】如图,已知第一象限内的点A在反比例函数y=
的图象上,第二象限内的点B在反比例函数y=
的图象上,且OA⊥OB,cosA=
,则k的值为( )
![]()
A. -3 B. -4 C. -
D. -2![]()
【答案】B
【解析】试题解析:过A作AE⊥x轴,过B作BF⊥x轴,
![]()
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOF+∠EOA=90°,
∵∠BOF+∠FBO=90°,
∴∠EOA=∠FBO,
∵∠BFO=∠OEA=90°,
∴△BFO∽△OEA,
在Rt△AOB中,cos∠BAO=
,
设AB=
,则OA=1,根据勾股定理得:BO=
,
∴OB:OA=
:1,
∴S△BFO:S△OEA=2:1,
∵A在反比例函数y=
上,
∴S△OEA=1,
∴S△BFO=2,
则k=-4.
故选B.
练习册系列答案
相关题目