题目内容

已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有


  1. A.
    6种
  2. B.
    5种
  3. C.
    4种
  4. D.
    3种
C
分析:根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.
解答:依题意得有四种组合方式:
(1)①③,利用两组对边平行的四边形是平行四边形判定;
(2)②④,利用两组对边相等的四边形是平行四边形判定;
(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.
故选C.
点评:此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网