题目内容
已知:如图,在等边△
中取点
,使得
的长分别为3,4,5,将线段
以点
为旋转中心顺时针旋转60°得到线段
,连接
,下列结论:

①△
可以由△
绕点
顺时针旋转60°得到;
②点
与点
的距离为3; ③
°;
④
其中正确的结论有(▲)
①△
②点
④
其中正确的结论有(▲)
| A.①②④ | B.①③④ | C.①②③ | D.②③④ |
C
连PD,如图,
∵线段AP以点A为旋转中心顺时针旋转60°得到线段AD,
∴AD=AP,∠DAP=60°,
又∵△ABC为等边三角形,
∴∠BAC=60°,AB=AC,
∴∠DAB+∠BAP=∠PAC+∠BAP,
∴∠DAP=∠PAC,
∴△ABD可以由△APC绕点A顺时针旋转60°得到,所以①正确;

∵DA=PA,∠DAP=60°,
∴△ADP为等边三角形,
∴PD=PA=3,所以②正确;
在△PBD中,PB=4,PD=3,由①得到BD=PC=5,
∵32+42=52,即PD2+PB2=BD2,
∴△PBD为直角三角形,且∠BPD=90°,
由②得∠APD=60°,
∴∠APB=∠APD+∠BPD=60°+90°=150°,所以③正确;
∵△ADB≌△APC,
∴S△ADB=S△APC,
∴S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD=
,所以④不正确.
故选C.
∵线段AP以点A为旋转中心顺时针旋转60°得到线段AD,
∴AD=AP,∠DAP=60°,
又∵△ABC为等边三角形,
∴∠BAC=60°,AB=AC,
∴∠DAB+∠BAP=∠PAC+∠BAP,
∴∠DAP=∠PAC,
∴△ABD可以由△APC绕点A顺时针旋转60°得到,所以①正确;
∵DA=PA,∠DAP=60°,
∴△ADP为等边三角形,
∴PD=PA=3,所以②正确;
在△PBD中,PB=4,PD=3,由①得到BD=PC=5,
∵32+42=52,即PD2+PB2=BD2,
∴△PBD为直角三角形,且∠BPD=90°,
由②得∠APD=60°,
∴∠APB=∠APD+∠BPD=60°+90°=150°,所以③正确;
∵△ADB≌△APC,
∴S△ADB=S△APC,
∴S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD=
,所以④不正确.
故选C.
练习册系列答案
相关题目