题目内容
已知排水管的截面为如图所示的圆O,半径为10,圆心O到水面的距离是6,求水面宽AB.
如图,直线经过、两点,则不等式的解集为_______.
如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=BC,连结CD、EF.求证:CD=EF.
平行四边形的一边长为10cm,那么这个平行四边形的两条对角线长可以是( )
A. 4cm和 6cm B. 6cm和 8cm C. 20cm和 30cm D. 8cm 和12cm
如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, .求BE的长.
如图,CD是⊙O的直径,若AB⊥CD,垂足为B,∠OAB=40°,则∠C等于________度.
如图,AB为半圆O的直径,AD、BC分别切⊙O于A,B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连结OD、OE、OC,对于下列结论:
①AD+BC=CD;②∠DOC=90°;③S梯形ABCD=CD•OA;④.
其中结论正确的个数是( )
A. 1 B. 2 C. 3 D. 4
给出下面两个定理:
①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
应用上述定理进行如下推理:
如图,直线l是线段MN的垂直平分线.
∵点A在直线l上,∴AM=AN.( )
∵BM=BN,∴点B在直线l上.( )
∵CM≠CN,∴点C不在直线l上.
这是∵如果点C在直线l上,那么CM=CN, ( )
这与条件CM≠CN矛盾.
以上推理中各括号内应注明的理由依次是 ( )
A. ②①① B. ②①②
C. ①②② D. ①②①
一个命题,如果题设成立,结论一定成立,这样的命题是 命题;如果题设成立,结论不成立或不一定成立,这样的命题叫 命题(填“真”、“假”).