题目内容

已知:如图,在梯形ABCD中,AB∥CD,AD=BC,AB=10,CD=18,∠ADC=60°,过BC上一点E作直线EH,交CD于点F,交AD的延长线于点H,且EF=FH.
(1)求梯形ABCD的面积;
(2)求证:AD=DH+BE.
 

(1)解:过点A作AG⊥CD于点G.
∵在梯形ABCD中,AD=BC,AB=10,CD=18,
∴DG=(18-10)÷2=4.
∵在Rt△ADG中,∠ADC=60°,


(2)证明:过点E作EM∥AD,交CD于点M,
∴ ∠H=∠FEM.  
∵ EF=FH,∠DFH=∠EFM,   ∴△DFH ≌△MFE.
∴ DH=EM.
∵ 四边形为等腰梯形,   ∴ ∠C=∠ADC.
∵ EM∥AD, ∴∠ADC=∠EMC,∴ ∠C=∠EMC .
∴ EM=EC,  ∴ DH=EC. 
∵ BC=BE+EC, AD=BC,     ∴ AD=BE+DH.

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网