题目内容
点P(1,a)在反比例函数 的图象上,它关于y轴的对称点在一次函数 的图象上,则此反比例函数的解析式为__________________________
某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务.问计划每天加工服装多少套?设计划每天加工x套,则根据题意可得方程为( )
A. +=18 B. +=18
C. +=18 D. +=18
如图,矩形ABCD中,AB=2,BC=3,以A为圆心,1为半径画圆,E是⊙A上一动点,P是BC上的一动点,则PE+PD的最小值是 .
问题探究:
(1)如图①,边长为4的等边△OAB位于平面直角坐标系中,将△OAB折叠,使点B落在OA的中点处,则折痕长为_ __;
(2)如图②,矩形OABC位于平面直角坐标系中,其中OA=8,AB=6,将矩形沿线段MN折叠,点B落在x轴上,其中,求折痕MN的长;
问题解决:
(3)如图③,四边形OABC位于平面直角坐标系中,其中OA=AB=6,CB=4,BC∥OA,AB⊥OA于点A,点Q(4,3)为四边形内部一点,将四边形折叠,使点B落在x轴上,问是否存在过点Q的折痕,若存在,求出折痕长,若不存在,请说明理由.
为提高学生的爱国意识,陶冶爱国情操,某中学举行了以“厉害了,我的国”为主题的书法绘画大赛,该校九年级共有三个班都参加了这次活动,三个班根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100分)如下表所示:
收集数据:
数据
(1)请填写下表:
得出结论:
(2)如果在每个班级参加决赛的选手中分别选出3人参加总决赛,你认为哪个班级的实力更强一些?请简要说明理由.
如图,△ABC是边长为1的等边三角形,取BC边中点E,做ED∥AB,EF∥AC,得到四边形EDAF,
它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,( )
A. B. C. D.
在这五个数中,无理数共有( )
A. 1个 B. 2个 C. 3个 D. 4个
在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C. 34 D. 10
(1)分解因式:ax2-2ax+a=__________;
(2)计算:=________.