题目内容
19.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…An,…,若点A1坐标为(3,1),点A2014的坐标为(0,4).分析 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2014除以4,根据商和余数的情况确定点A2014的坐标即可.
解答 解:∵A1的坐标为(3,1),
∴A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),
…,
依此类推,每4个点为一个循环组依次循环,
∵2014÷4=503余2,
∴点A2014的坐标与A2的坐标相同,为(0,4);
故答案为:(0,4).
点评 此题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
练习册系列答案
相关题目
2.下列运算正确的是( )
| A. | x3+x3=2x6 | B. | (-x5)4=x20 | C. | xm•xn=xmn | D. | x8÷x2=x4 |
7.某服装经销商甲.库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可卖出120套(两种服装的市场行情互不受影响),目前有一可进B品牌服装的机会,若这一机会错过,估计一年内进不到这种服装.可是,经销商甲手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系:
(1)猜想并求出转让价格与转让数量之间的函数关系;
(2)现在经销商甲面临三种选择:
方案1:不转让A品牌服装,也不经销B品牌服装;
方案2:全部转让A品牌服装,用转让来的资金购B品牌服装,经销B品牌服装;
方案3:部分转让A品牌服装,用转让来的资金购B品牌服装,经销B品牌服装,同时也经销A品牌服装.
如果你是经销商甲,为使自己在服装经销过程中获得最大利润,你选择哪一种方案?怎样选择?为什么?
| 转让数量(套) | 1200 | 1100 | 1000 | 900 | 800 | 700 | 600 | 500 | 400 | 300 | 200 | 100 |
| 价格(元/套) | 240 | 250 | 260 | 270 | 280 | 290 | 300 | 310 | 320 | 330 | 340 | 350 |
(2)现在经销商甲面临三种选择:
方案1:不转让A品牌服装,也不经销B品牌服装;
方案2:全部转让A品牌服装,用转让来的资金购B品牌服装,经销B品牌服装;
方案3:部分转让A品牌服装,用转让来的资金购B品牌服装,经销B品牌服装,同时也经销A品牌服装.
如果你是经销商甲,为使自己在服装经销过程中获得最大利润,你选择哪一种方案?怎样选择?为什么?
9.下列各式能用完全平方公式分解的是( )
| A. | y2-18y+9 | B. | 4x2+6x+9 | C. | x2-8x-16 | D. | -a2+4ab-4b2 |