题目内容


如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.

(1)求证:CD为⊙O的切线;

(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)


(1)证明:连接OD,

∵BC是⊙O的切线,

∴∠ABC=90°,

∵CD=CB,

∴∠CBD=∠CDB,

∵OB=OD,

∴∠OBD=∠ODB,

∴∠ODC=∠ABC=90°,

即OD⊥CD,

∵点D在⊙O上,

∴CD为⊙O的切线;

(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,

∴∠BOF=60°,OB=2,BF=

∵OF⊥BD,

∴BD=2BF=2,∠BOD=2∠BOF=120°,

∴S阴影=S扇形OBD﹣SBOD=﹣×2×1=π﹣


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网