题目内容

如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).

(1)求点P落在正方形面上(含边界,下同)的概率;

(2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正方形面上的概率为?若存在,指出其中的一种平移方式;若不存在,说明理由.

(1);(2). 【解析】【试题分析】 (1)列表格把每种情况都列举出来,看看满足条件的有几种,然后作比即可. (2)将正方形向左平移1个单位,向下平移1个单位就能够满足条件. 【试题解析】 (1)由图可知,点P落在正方形面上(含边界,下同)的情况是:(1,1),(2,1),(3,1),(1,2),(2,2),(3,2),(1,3),(2,3),(3,3);概率是:9...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网