题目内容

设函数y=-x2-2kx-3k2-4k-5的最大值为M,为使M最大,k=


  1. A.
    -1
  2. B.
    1
  3. C.
    -3
  4. D.
    3
A
分析:由于M是最大值,那么M=,即M=-2k2-4k-5,于是求k=-的值即可.
解答:∵y=-x2-2kx+(-3k2-4k-5),
∴M==
∴M=-2k2-4k-5,
又∵M最大,
∴k=-=-=-1.
故选A.
点评:本题考查了函数的最值.注意y最大值=即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网