题目内容
已知:| 2 |
| 1×3 |
| 1 |
| 3 |
| 2 |
| 3×5 |
| 1 |
| 3 |
| 1 |
| 5 |
| 2 |
| 5×7 |
| 1 |
| 5 |
| 1 |
| 7 |
(1)照上面算式,你能猜出
| 2 |
| 2005×2007 |
(2)利用上面的规律计算:
| 1 |
| 1×4 |
| 1 |
| 4×7 |
| 1 |
| 7×10 |
| 1 |
| 10×13 |
| 1 |
| 301×304 |
分析:(1)根据已知条件:
=1-
,
=
-
,
=
-
,可以得出分母相乘部分,差值是2,分子是2,可以分为两个分数相减,分子是1的形式.
(2)将原式按照(1)中形式分解后,仍然不能运算,所以还需要提取
,得出答案即可.
| 2 |
| 1×3 |
| 1 |
| 3 |
| 2 |
| 3×5 |
| 1 |
| 3 |
| 1 |
| 5 |
| 2 |
| 5×7 |
| 1 |
| 5 |
| 1 |
| 7 |
(2)将原式按照(1)中形式分解后,仍然不能运算,所以还需要提取
| 1 |
| 3 |
解答:解:(1)∵
=1-
,
=
-
,
=
-
,
∴
=
-
;
故答案为:
-
;
(2)原式=
(1-
+
-
+--
-
)
=
(1-
),
=
.
| 2 |
| 1×3 |
| 1 |
| 3 |
| 2 |
| 3×5 |
| 1 |
| 3 |
| 1 |
| 5 |
| 2 |
| 5×7 |
| 1 |
| 5 |
| 1 |
| 7 |
∴
| 2 |
| 2005×2007 |
| 1 |
| 2005 |
| 1 |
| 2007 |
故答案为:
| 1 |
| 2005 |
| 1 |
| 2007 |
(2)原式=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 301 |
| 1 |
| 304 |
=
| 1 |
| 3 |
| 1 |
| 304 |
=
| 101 |
| 304 |
点评:此题主要考查了数的运算规律性知识,运用已知条件得出分数的分子与分母的变化是解决问题的关键,对于(2)中需要提取
,这种题型应引起同学们的注意.
| 1 |
| 3 |
练习册系列答案
相关题目