题目内容
①abc>0;②b-a>c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数);
其中正确的结论有( )
A.5个
B.4个
C.3个
D.2个
【答案】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
解答:解:由二次函数的图象开口向下可得a<0,由抛物线与y轴交于x轴上方可得c>0,由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2-4ac>0,
把x=1代入y=ax2+bx+c,得:y=a+b+c,由函数图象可以看出x=1时二次函数的值为正,∵对称轴为x=1,a,b异号,∴b>0,
∴①abc<0;故此选项错误;
②∵当x=-1时,ax2+bx+c<0,
∴a-b+c<0,
∴-(a-b+c)>0,
∴b-a>c;故此选项正确;
③当x=2时,ax2+bx+c>0,
∴4a+2b+c>0;
④2c<3b;当x=3时函数值小于0,y=9a+3b+c<0,且x=-
=1,
即a=-
,代入得9(-
)+3b+c<0,得2c<3b,正确;
⑤当x=1时,y的值最大.此时,y=a+b+c,
而当x=m时,y=am2+bm+c,
所以a+b+c>am2+bm+c,
故a+b>am2+bm,即a+b>m(am+b),正确.
②③④⑤正确.
故选B.
点评:此题主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a-b+c,然后根据图象判断其值.
解答:解:由二次函数的图象开口向下可得a<0,由抛物线与y轴交于x轴上方可得c>0,由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2-4ac>0,
把x=1代入y=ax2+bx+c,得:y=a+b+c,由函数图象可以看出x=1时二次函数的值为正,∵对称轴为x=1,a,b异号,∴b>0,
∴①abc<0;故此选项错误;
②∵当x=-1时,ax2+bx+c<0,
∴a-b+c<0,
∴-(a-b+c)>0,
∴b-a>c;故此选项正确;
③当x=2时,ax2+bx+c>0,
∴4a+2b+c>0;
④2c<3b;当x=3时函数值小于0,y=9a+3b+c<0,且x=-
即a=-
⑤当x=1时,y的值最大.此时,y=a+b+c,
而当x=m时,y=am2+bm+c,
所以a+b+c>am2+bm+c,
故a+b>am2+bm,即a+b>m(am+b),正确.
②③④⑤正确.
故选B.
点评:此题主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a-b+c,然后根据图象判断其值.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |