题目内容

如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.
(1)求证:AE=ED;
(2)若AC=2,求△CDE的周长.

(1)证明:∵∠ACB=90°,CD是AB边上的中线,
∴CD=AD=DB.
∵∠B=30°,
∴∠A=60°.
∴△ACD是等边三角形.
∵CE是斜边AB上的高,
∴AE=ED.

(2)解:由(1)得AC=CD=AD=2ED,
又AC=2,
∴CD=2,ED=1.

∴△CDE的周长=
分析:(1)根据直角三角形斜边上的中线等于斜边的一半,得CD=AD,根据直角三角形的两个锐角互余,得∠A=60°,从而判定△ACD是等边三角形,再根据等腰三角形的三线合一的性质即可证明;
(2)结合(1)中的结论,求得CD=2,DE=1,只需根据勾股定理求得CE的长即可.
点评:此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.
直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.
有一个角是60°的等腰三角形是等边三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网