搜索
题目内容
如果在Rt△ABC中,∠C=90°,a=8,b=15,则sinA+sinB+sinC=________.
试题答案
相关练习册答案
分析:根据勾股定理求出斜边的长,再由正弦的定义,分别求出∠A,∠B,∠C的正弦值,然后求出它们的和.
解答:由勾股定理有:c=
=
=17,于是
,所以sinA+sinB+sinC=
故答案是:
点评:本题考查的是锐角三角函数的定义,先用勾股定理求出斜边的长,再用正弦的定义求出∠A,∠B的正弦值,∠C=90°,它的正弦值是1,然后求出它们的和.
练习册系列答案
中考新方向发现中考系列答案
安徽中考总复习综合练习系列答案
寒假生活教育科学出版社系列答案
中考模拟总复习江苏科技出版社系列答案
寒假衔接班寒假提优20天江苏人民出版社系列答案
宏翔文化3年中考2年模拟1年预测系列答案
初中毕业生升学模拟考试系列答案
过好寒假每一天系列答案
寒假作业中国地图出版社系列答案
中考复习攻略南京师范大学出版社系列答案
相关题目
黄金分割比是生活中比较多见的一种长度比值,它能给人许多美感和科学性,我们初中阶段学过的许多几何图形也有着类似的边长比例关系.例如我们熟悉的顶角是36°的等腰三角形,其底与腰之比就为黄金分割比
5
-1
2
,底角平分线与腰的交点为黄金分割点.
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你证明点D是腰AB的黄金分割点;
(2)如图2,在△ABC中,AB=AC,若
AB
BC
=
5
-1
2
,则请你求出∠A的度数;
(3)如图3,如果在Rt△ABC中,∠ACB=90°,CD为AB上的高,∠A、∠B、∠ACB的对边分别为a,b,c.若点D是AB的黄金分割点,那么该直角三角形的三边a,b,c之间是什么数量关系?并证明你的结论.
如果在Rt△ABC中,∠C=90°,a=8,b=15,则sinA+sinB+sinC=
.
如果在Rt△ABC中,∠C=90°,BC=1,AB=3,那么cosA=
2
2
3
2
2
3
.
黄金分割比是生活中比较多见的一种长度比值,它能给人许多美感和科学性,我们初中阶段学过的许多几何图形也有着类似的边长比例关系.例如我们熟悉的顶角是36°的等腰三角形,其底与腰之比就为黄金分割比
,底角平分线与腰的交点为黄金分割点.
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你证明点D是腰AB的黄金分割点;
(2)如图2,在△ABC中,AB=AC,若
,则请你求出∠A的度数;
(3)如图3,如果在Rt△ABC中,∠ACB=90°,CD为AB上的高,∠A、∠B、∠ACB的对边分别为a,b,c.若点D是AB的黄金分割点,那么该直角三角形的三边a,b,c之间是什么数量关系?并证明你的结论.
如果在Rt△ABC中,∠C=90°,BC=1,AB=3,那么cosA=
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案