题目内容
一个二次函数的图象顶点坐标为(2,1),形状与抛物线相同,求这个函数解析式。
有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( )
A. 2.76米 B. 6.76米 C. 6米 D. 7米
抛物线y=-2x2-x+2与坐标轴的交点个数是( )
A. 3 B. 2 C. 1 D. 0
在多项式6y3-4x5-8+2y4z2中,最高次项的系数和常数项分别为( )
A. 6和-8 B. -4和-8 C. 2和-8 D. -4和8
已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).
(1)求该函数的关系式;
(2)求当横坐标取﹣3和1时所对应的函数值;
(3)根据(2)计算,直接写出当x的值在什么范围时,所对应的函数值大于0.
(题文)(问题引领)
问题1:在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结CG,先证明
△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是________________.
(探究思考)
问题2:若将问题1的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,
∠ECF= ∠BCD, 问题1的结论是否仍然成立?请说明理由.
(拓展延伸)
问题3:在问题2的条件下,若点E在AB的延长线上,点F在DA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE、DF、EF之间存在什么样的等量关系?并说明理由.
已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.
已知关于的一元二次方程有两个实数根,.
求实数的取值范围;
若方程的两实数根,满足,求的值.
四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.
如图,求证:矩形是正方形;
若,,求的长度;
当线段与正方形的某条边的夹角是时,直接写出的度数.