题目内容
【题目】如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为 . ![]()
【答案】![]()
【解析】解:∵CE=5,△CEF的周长为18,
∴CF+EF=18﹣5=13.
∵F为DE的中点,
∴DF=EF.
∵∠BCD=90°,
∴CF=
DE,
∴EF=CF=
DE=6.5,
∴DE=2EF=13,
∴CD=
=
=12.
∵四边形ABCD是正方形,
∴BC=CD=12,O为BD的中点,
∴OF是△BDE的中位线,
∴OF=
(BC﹣CE)=
(12﹣5)=
.
故答案为:
.
先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.
练习册系列答案
相关题目