题目内容

如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:
(1)D是BC的中点;
(2)△BEC ∽△ADC;
(3)AB× CE=2DP×AD.

证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC。
∵AB=AC,∴D是BC的中点。
(2)∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,即∠CEB=∠CDA=90°,
∵∠C是公共角,∴△BEC∽△ADC。
(3)∵△BEC∽△ADC,∴∠CBE=∠CAD。
∵AB=AC,AD=CD,∴∠BAD=∠CAD。∴∠BAD=∠CBE。
∵∠ADB=∠BEC=90°,∴△ABD∽△BCE。
。∴
∵BC=2BD,∴,即
∵∠BDP=∠BEC=90°,∠PBD=∠CBE,∴△BPD∽△BCE。∴
,即AB•CE=2DP•AD。

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网