题目内容
| 1 |
| AD |
| 1 |
| AB |
| 1 |
| AC |
分析:延长BA到E使AC=AE,则△ACE是等边三角形,且AD∥EC,从而将要证的式子通分化简可证得结论.
解答:
解:
延长BA到E使AC=AE,则△ACE是等边三角形,且AD∥EC,
=
+
?
=
=
?AD•BE=AB•AC?
=
=
,
又∵AD∥EC,
∴
=
=
成立.
即结论得证.
延长BA到E使AC=AE,则△ACE是等边三角形,且AD∥EC,
| 1 |
| AD |
| 1 |
| AB |
| 1 |
| AC |
| 1 |
| AD |
| AB+AC |
| AB×AC |
| BE |
| AB×AC |
| AD |
| AB |
| AC |
| BE |
| CE |
| BE |
又∵AD∥EC,
∴
| AD |
| AB |
| AC |
| BE |
| CE |
| BE |
即结论得证.
点评:本题考查了平行线的性质,难度较大,解答本题的关键是正确地作出等边三角形ACE.
练习册系列答案
相关题目