题目内容
(6分)抛物线交轴于点A,交轴 正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)写出当时,x的取值范围。
已知是方程的解,则k的值为 .
(本题10分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,,BC的长是10m,则乘电梯从点B到点C上升的高度是 ( )
A. B.5 C. D.10
(10分)如图,抛物线l1:y=-x2+2bx+c(b>0)的顶点为A,与y轴交于点B;若抛物线l2与l1关于原点O成中心对称,其顶点为C , 与y轴交于点D;其中点A、B、C、D中的任意三点都不在同一条直线上
(1)顺次连接四点得四边形ABCD,则四边形ABCD形状是______________。
(2)请你探究:四边形ABCD能否成为正方形?若能,求出符合条件的b,c的值;若不能,请说明理由.
(3)继续探究:四边形ABCD是邻边之比为1:2的矩形时,求b,c的值。
将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 .
如图,点D在以AC为直径⊙O的上,若那么∠ACB的度数是( )
A.35° B.55° C.70° D.110°
如图,太阳光线与地面成的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是 ;
如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径的⊙0与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若BC=12,AD=8,求BF的长.