题目内容

已知:如图,AB是⊙O1与⊙O2的公共弦,过B点的直线CD分别交⊙O1于C点,交⊙O2于D点,∠BAD的平分线AM交⊙O1于E点,交直线CD于F点,交⊙O2于M点.
(1)连接DM、CE,请在图中(不添加别的“点”和“线”)找出与△DFM相似的所有三角形,并选择其中一个三角形,证明它与△DFM相似;
(2)设CD=12,CB=5,DF=4,AF=3FM,求EF的长.

【答案】分析:(1)由已知,∠FDM=∠FAB=∠C,∠DFM=∠CFE,可证△DFM∽△CEF,△DFM∽△AFB,又AM平分∠BAD,即得MDF=∠DAM,又∠M=∠M,易证△DFM∽△ADM,与△DFM相似的三角形有:△CEF、△AFB、△ADM;
(2)根据圆的相交弦定理和圆的切割线定理求解.
解答:解:(1)与△DFM相似的三角形有:△CEF、△AFB、△ADM,(3分)
(少写一个相似三角形扣(1分),扣完为止)
证明:∵∠FDM=∠FAB=∠C,∠DFM=∠CFE,
∴△DFM∽△CEF,△DFM∽△AFB
∵AM平分∠BAD
∴∠DAF=∠FAB
∵∠MDF=∠FAB
∴∠MDF=∠DAM
又∠M=∠M
∴△DFM∽△ADM;(5分)
(只要证明其中一个三角形与△DFM相似即可)

(2)BF=CD-CB-DF=3,
由圆的相交弦定理,得DF•BF=AF•MF,即4×3=3MF2
解得MF=2,故AF=6,(7分)
由圆的切割线定理,得FE•FA=FB•FC,即6FE=3×8,
解得EF=4.(8分)
点评:此题综合考查了相似三角形的判定、相交弦定理、切割线定理和圆周角定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网