题目内容
直线y=﹣
x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S=
时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
![]()
解答: 解:(1)y=0,x=0,求得A(8,0),B(0,6),
(2)∵OA=8,OB=6,
∴AB=10.
∵点Q由O到A的时间是
(秒),
∴点P的速度是
=2(单位长度/秒).
当P在线段OB上运动(或O≤t≤3)时,
OQ=t,OP=2t,S=t2.
当P在线段BA上运动(或3<t≤8)时,
OQ=t,AP=6+10﹣2t=16﹣2t,
如图,过点P作PD⊥OA于点D,
由
,得PD=
.
∴S=
OQ•PD=﹣
.
(3)当S=
时,∵
,∴点P在AB上
当S=
时,﹣
=![]()
∴t=4
∴PD=
=
,AP=16﹣2×4=8
AD=
=![]()
∴OD=8﹣
=![]()
∴P(
,
) M1(
,
),M2(﹣
,
),M3(
,﹣
)
6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图:
根据以上提供的信息解答下列问题:
![]()
(1)把一班竞赛成绩统计图补充完整;
(2)写出下表中a、b、c的值:
| 平均数(分) | 中位数(分) | 众数(分) | |
| 一班 | a | b | 90 |
| 二班 | 87.6 | 80 | c |
(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析:
①从平均数和中位数方面比较一班和二班的成绩;
②从平均数和众数方面比较一班和二班的成绩;
③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.
如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=( )
![]()
|
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |