题目内容
某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据,
薄板的边长(cm) | 20 | 30 |
出厂价(元/张) | 50 | 70 |
⑴求一张薄板的出厂价与边长之间满足的函数关系式;
⑵已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).
①求一张薄板的利润与边长这之间满足的函数关系式.
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?
【答案】
(1) y=2x+10 ; (2) P=-
x2+2x+10 ,边长为25cm时,最大利润为35元.
【解析】
试题分析:(1)利用待定系数法求一次函数解析式即可得出答案;
(2)①首先假设一张薄板的利润为p元,它的成本价为mx2元,由题意,得:p=y-mx2,进而得出m的值,求出函数解析式即可;
②利用二次函数的最值公式求出二次函数的最值即可.
试题解析:⑴设一张薄板的边长为x cm,它的出厂价为y元,基础价为n元,浮动价为kx元,
则y=kx+n
由表格中数据得
??? 解得![]()
∴y=2x+10
⑵①设一张薄板的利润为P元,它的成本价为mx2元,由题意得P=y-mx2=2x+10-mx2
将x=40,P=26代入P=2x+10-mx2中,得26=2×40+10-m×402? 解得m=![]()
∴P=-
x2+2x+10?? (3分)
②∵a=-
<0? ∴当
(在5~50之间)时,
![]()
即出厂一张边长为25cm的薄板,所获得的利润最大,最大利润为35元
考点: 二次函数的应用.
练习册系列答案
相关题目
某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-
,
)
| 薄板的边长(cm) | 20 | 30 |
| 出厂价(元/张) | 50 | 70 |
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-
某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-
,
)
| 薄板的边长(cm) | 20 | 30 |
| 出厂价(元/张) | 50 | 70 |
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-
某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-
,
)
| 薄板的边长(cm) | 20 | 30 |
| 出厂价(元/张) | 50 | 70 |
(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),
①求一张薄板的利润与边长之间满足的函数关系式.
②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?
参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(-