题目内容

如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是弧AB上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE

(1)求证:四边形OGCH是平行四边形;
(2)当点C在弧AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;
(3)求证:是定值.

(1)连结OC,交DE于M,

∵四边形ODCE是矩形
∴OM=CM,EM=DM
又∵DG=HE
∴EM-EH=DM-DG,即HM=GM
∴四边形OGCH是平行四边形
(2)DG不变;
在矩形ODCE中,DE=OC=3,所以DG=1
(3)作HF⊥CD于点F,则△DHF∽△DEC



∵HF2=CH2-CF2=DH2-DF2,DH=2
∴CH2=2-
整理,得
="12"

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网