题目内容
已知实数的满足a+b=45,ab=5,则a2+b2=_________.
分式的值是整数,负整数m的值为_______.
解方程:.
教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式.”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等.
例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
例如求代数式2x2+4x-6的最小值,2x2+4x-6=2(x2+2x-3)=2(x+1)2-8,可知当时,有最小值,最小值是.
根据阅读材料用配方法解决下列问题:
(1)分解因式:m2-4m-5= .
(2)当a,b为何值时,多项式a2+b2-4+6b+18有最小值,并求出这个最小值.
(3)当a,b为何值时,多项式a2-2ab+2b2-2a-4b+27有最小值,并求出这个最小值.
如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第_____次移动到的点到原点的距离为2018.
现有一列数:a1,a2,a3,a4,…,an-1,an(n为正整数),规定a1=2,a2- a1=4,,…,(n≥2),若,则n的值为( ).
A. 2015 B. 2016 C. 2017 D. 2018
若分式有意义,则x的取值范围是( )
A. x≠1 B. x>1 C. x=1 D. x<1
已知菱形的边长为3,一个内角为60°,则该菱形的面积是_____.
当k满足什么条件时,关于x的方程x-=2-的解是非负数?