题目内容

用如图所示的大小正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片
2
2
张,B类卡片
3
3
张,C类卡片
1
1
张.
分析:根据长方形的面积等于长乘以宽列式,再根据多项式的乘法法则计算,然后结合卡片的面积即可作出判断.
解答:解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2
A图形面积为a2,B图形面积为ab,C图形面积为b2
则可知需要A类卡片2张,B类卡片3张,C类卡片1张.
故本题答案为:2;3;1.
点评:此题主要考查了多项式乘多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网