题目内容

【题目】如图,从直径为2cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是 cm.

【答案】

【解析】

试题分析:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.设圆锥的底面圆的半径为r,由AOB=90°得到AB为圆形纸片的直径,则OB=AB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.

解:设圆锥的底面圆的半径为r

连结AB,如图,

扇形OAB的圆心角为90°

∴∠AOB=90°

AB为圆形纸片的直径,

AB=2cm

OB=AB=cm

扇形OAB的弧AB的长==π

2πr=π

r=cm).

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网